head first JVM(3)

内存分配与回收策略

自动化解决了两个问题:

  • 给对象分配内存
  • 回收分配给对象的内存

对象优先在Eden分配

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。在实际应用中,内存回收日志一般是打印到文件后通过日志工具进行分析

-XX:SurvivorRatio=8决定了新生代中Eden区与一个Survivor区的空间比例是8∶1,从输出的结果也可以清晰地看到“eden space 8192K、fromspace 1024K、to space 1024K”的信息,新生代总可用空间为9216KB(Eden区+1个Survivor区的总容量)。

Minor GC和Full GC
  • 新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。
  • 老年代GC(Major GC / Full GC):指发生在老年代的GC,出现了MajorGC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

长期存活的对象将进入老年代

对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。对象晋升老年代的年龄阈值,可以通过参数-XX:MaxTenuringThreshold设置。

动态对象年龄判定

为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

空间分配担保

在发生 Minor GC 之前,虚拟机先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果条件成立的话,那么 Minor GC 可以确认是安全的。

如果不成立的话,虚拟机会查看 HandlePromotionFailure 的值是否允许担保失败,如果允许那么就会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次 Minor GC;如果小于,或者 HandlePromotionFailure 的值不允许冒险,那么就要进行一次 Full GC。

“冒险”是冒了什么风险

空间分配担保失败 使用复制算法的 Minor GC 需要老年代的内存空间作担保,如果担保失败会执行一次 Full GC。

新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代。与生活中的贷款担保类似,老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,一共有多少对象会活下来在实际完成内存回收之前是无法明确知道的,所以只好取之前每一次回收晋升到老年代对象容量的平均大小值作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。取平均值进行比较其实仍然是一种动态概率的手段,也就是说,如果某次MinorGC存活后的对象突增,远远高于平均值的话,依然会导致担保失败(HandlePromotion Failure)。如果出现了HandlePromotionFailure失败,那就只好在失败后重新发起一次Full GC。虽然担保失败时绕的圈子是最大的,但大部分情况下都还是会将HandlePromotionFailure开关打开,避免Full GC过于频繁

Licensed under CC BY-NC-SA 4.0
Last updated on Mar 23, 2024 06:11 UTC
让过去的过去,给时间点时间
Built with Hugo
Theme Stack designed by Jimmy