Head First JVM(2)

垃圾收集器与内存分配策略

判断对象存活

1.引用计数算法

给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。

2.可达性分析算法

通过可达性分析(Reachability Analysis)来判定对象是否存活。这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(ReferenceChain),当一个对象到GC Roots没有任何引用链相连,则证明此对象是不可用的。对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,它们将会被判定为是可回收的对象。

可作为GC Roots的对象包括下面几种:

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象。

  • 方法区中类静态属性引用的对象。

  • 方法区中常量引用的对象。

  • 本地方法栈中JNI(即一般说的Native方法)引用的对象。

即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。finalize()方法是对象逃脱死亡命运的最后一次机会,稍后GC将对F-Queue中的对象进行第二次小规模的标记,如果对象要在finalize()中成功拯救自己——只要重新与引用链上的任何一个对象建立关联即可,譬如把自己(this关键字)赋值给某个类变量或者对象的成员变量,那在第二次标记时它将被移除出“即将回收”的集合;如果对象这时候还没有逃脱,那基本上它就真的被回收了。

一个对象的finalize()被执行,但是它仍然可以存活。

注意:代码中有两段完全一样的代码片段,执行结果却是一次逃脱成功,一次失败,这是因为任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行,因此第二段代码的自救行动失败了。

3.方法区回收

永久代的垃圾收集主要回收两部分内容:废弃常量和无用的类。

  • 废弃常量

回收废弃常量与回收Java堆中的对象非常类似。以常量池中字面量的回收为例,假如一个字符串“abc”已经进入了常量池中,但是当前系统没有任何一个String对象是叫做“abc”的,换句话说,就是没有任何String对象引用常量池中的“abc”常量,也没有其他地方引用了这个字面量,如果这时发生内存回收,而且必要的话,这个“abc”常量就会被系统清理出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。

类需要同时满足下面3个条件才能算是“无用的类”:

1该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例。

2加载该类的ClassLoader已经被回收。

3该类对应的java.lang.Class 对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。

虚拟机可以对满足上述3个条件的无用类进行回收,这里说的仅仅是“可以”,而并不是和对象一样,不使用了就必然会回收。是否对类进行回收,HotSpot虚拟机提供了-Xnoclassgc参数进行控制,还可以使用-verbose:class以及-XX:+TraceClassLoading、-XX:+TraceClassUnLoading查看类加载和卸载信息,其中-verbose:class和-XX:+TraceClassLoading可以在Product版的虚拟机中使用,-XX:+TraceClassUnLoading参数需要FastDebug版的虚拟机支持。在大量使用反射、动态代理、CGLib等ByteCode框架、动态生成JSP以及OSGi这类频繁自定义ClassLoader的场景都需要虚拟机具备类卸载的功能,以保证永久代不会溢出。

垃圾收集算法

标记-清除算法

  • “标记-清除”(Mark-Sweep)算法,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象

  • 复制算法:将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。

    现在的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1∶1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[插图]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8∶1,也就是每次新生代中可用内存空间为整个新生代容量的90% (80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle Promotion)。内存的分配担保就好比我们去银行借款,如果我们信誉很好,在98%的情况下都能按时偿还,于是银行可能会默认我们下一次也能按时按量地偿还贷款,只需要有一个担保人能保证如果我不能还款时,可以从他的账户扣钱,那银行就认为没有风险了。内存的分配担保也一样,如果另外一块Survivor空间没有足够空间存放上一次新生代收集下来的存活对象时,这些对象将直接通过分配担保机制进入老年代。

  • 标记-整理算法

  • 分代收集算法

    在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。

    老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。

HotSpot的算法实现

  • 枚举根节点

从可达性分析中从GC Roots节点找引用链这个操作为例,

①耗时:可作为GC Roots的节点主要在全局性的引用(例如常量或类静态属性)与执行上下文(例如栈帧中的本地变量表)中,现在很多应用仅仅方法区就有数百兆,如果要逐个检查这里面的引用,那么必然会消耗很多时间。

②GC停顿:因为这项分析工作必须在一个能确保一致性的快照中进行——这里“一致性”的意思是指在整个分析期间整个执行系统看起来就像被冻结在某个时间点上,不可以出现分析过程中对象引用关系还在不断变化的情况,该点不满足的话分析结果准确性就无法得到保证。这点是导致GC进行时必须停顿所有Java执行线程(Sun将这件事情称为“Stop TheWorld”)的其中一个重要原因,即使是在号称(几乎)不会发生停顿的CMS收集器中,枚举根节点时也是必须要停顿的。

准确性GC

在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

安全点

准确地完成GC Roots枚举,

问题:可能导致引用关系变化,或者说OopMap内容变化的指令非常多,如果为每一条指令都生成对应的OopMap,那将会需要大量的额外空间,这样GC的空间成本将会变得很高。

实际上,HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。

Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

问题:在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来

主动式中断: 当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。

问题:程序“不执行”的时候呢?(如:线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求)

安全区域

是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。

在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。

垃圾收集器

HotSpot垃圾收集器

ParNew收集器

可ParNew收集器是Serial收集器的多线程版本,ParNew收集器的工作示意图如下:

Serial收集器

ParNew收集器是许多运行在Server模式下的虚拟机中首选的新生代收集器。除去性能因素,很重要的原因是除了Serial收集器外,目前只有它能与CMS收集器配合工作。

但是,在单CPU环境中,ParNew收集器绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。然而,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。

Parallel Scavenge收集器

ParNew收集器 Parallel Scavenge收集器是新生代垃圾收集器,使用复制算法,也是并行的多线程收集器。与ParNew收集器相比,很多相似之处,但是Parallel Scavenge收集器更关注可控制的吞吐量。吞吐量越大,垃圾收集的时间越短,则用户代码则可以充分利用CPU资源,尽快完成程序的运算任务。

Parallel Scavenge收集器使用两个参数控制吞吐量:

XX:MaxGCPauseMillis 控制最大的垃圾收集停顿时间

XX:GCRatio 直接设置吞吐量的大小。

直观上,只要最大的垃圾收集停顿时间越小,吞吐量是越高的,但是GC停顿时间的缩短是以牺牲吞吐量和新生代空间作为代价的。比如原来10秒收集一次,每次停顿100毫秒,现在变成5秒收集一次,每次停顿70毫秒。停顿时间下降的同时,吞吐量也下降了。

除此之外,Parallel Scavenge收集器还可以设置参数-XX:+UseAdaptiveSizePocily来动态调整停顿时间或者最大的吞吐量,这种方式称为GC自适应调节策略,这点是ParNew收集器所没有的。

Serial Old收集器

Serial Old收集器是Serial收集器的老年代版本,也是一个单线程收集器,采用“标记-整理算法”进行回收。其运行过程与Serial收集器一样。

Serial Old收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。

Parallel Old收集器

Parallel Old收集器是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法进行垃圾回收。其通常与Parallel Scavenge收集器配合使用,“吞吐量优先”收集器是这个组合的特点,在注重吞吐量和CPU资源敏感的场合,都可以使用这个组合。

Parallel Scavenge and Parrallel Old收集器组合

CMS收集器

CMS收集器(Concurrent Mark Sweep)的目标就是获取最短回收停顿时间。在注重服务器的响应速度,希望停顿时间最短,则CMS收集器是比较好的选择。

整个执行过程分为以下4个步骤:

初始标记 并发标记 重新标记 并发清除 初始标记和重新标记这两个步骤仍然需要暂停Java执行线程,初始标记只是标记GC Roots能够关联到的对象,并发标记就是执行GC Roots Tracing的过程,而重新标记就是为了修正并发标记期间因用户程序执行而导致标记发生变动使得标记错误的记录。其执行过程如下:

CMS收集器

由上图可知,整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,因此,总体上CMS收集器的内存回收过程是与用户线程一起并发执行的。

CMS的优点很明显:并发收集、低停顿。由于进行垃圾收集的时间主要耗在并发标记与并发清除这两个过程,虽然初始标记和重新标记仍然需要暂停用户线程,但是从总体上看,这部分占用的时间相比其他两个步骤很小,所以可以认为是低停顿的。

尽管如此,CMS收集器的缺点也是很明显的:

对CPU资源太敏感,这点可以这么理解,虽然在并发标记阶段用户线程没有暂停,但是由于收集器占用了一部分CPU资源,导致程序的响应速度变慢

CMS收集器无法处理浮动垃圾。所谓的“浮动垃圾”,就是在并发标记阶段,由于用户程序在运行,那么自然就会有新的垃圾产生,这部分垃圾被标记过后,CMS无法在当次集中处理它们(为什么?原因在于CMS是以获取最短停顿时间为目标的,自然不可能在一次垃圾处理过程中花费太多时间),只好在下一次GC的时候处理。这部分未处理的垃圾就称为“浮动垃圾”

由于CMS收集器是基于“标记-清除”算法的,前面说过这个算法会导致大量的空间碎片的产生,一旦空间碎片过多,大对象就没办法给其分配内存,那么即使内存还有剩余空间容纳这个大对象,但是却没有连续的足够大的空间放下这个对象,所以虚拟机就会触发一次Full GC(这个后面还会提到)这个问题的解决是通过控制参数-XX:+UseCMSCompactAtFullCollection,用于在CMS垃圾收集器顶不住要进行FullGC的时候开启空间碎片的合并整理过程。

G1收集器

G1(Garbage-First)收集器是现今收集器技术的最新成果之一,之前一直处于实验阶段,直到jdk7u4之后,才正式作为商用的收集器。

与前几个收集器相比,G1收集器有以下特点:

并行与并发 分代收集(仍然保留了分代的概念) 空间整合(整体上属于“标记-整理”算法,不会导致空间碎片) 可预测的停顿(比CMS更先进的地方在于能让使用者明确指定一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒) 此外,G1收集器将Java堆划分为多个大小相等的Region(独立区域),新生代与老年代都是一部分Region的集合,G1的收集范围则是这一个个Region(化整为零)。

G1的工作过程如下:

初始标记(Initial Marking) 并发标记(Concurrent Marking) 最终标记(Final Marking) 筛选回收(Live Data Counting and Evacuation)

初始标记阶段仅仅只是标记一下GC Roots能够直接关联的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段的用户程序并发运行的时候,能在正确可用的Region中创建对象,这个阶段需要暂停线程。

并发标记阶段从GC Roots进行可达性分析,找出存活的对象,这个阶段食欲用户线程并发执行的。

最终标记阶段则是修正在并发标记阶段因为用户程序的并发执行而导致标记产生变动的那一部分记录,这部分记录被保存在Remembered Set Logs中,最终标记阶段再把Logs中的记录合并到Remembered Set中,这个阶段是并行执行的,仍然需要暂停用户线程。

最后在筛选阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间制定回收计划。整个执行过程如下:

G1收集器

client/serrver端不同的GC方式:

client server

Sun JDK HotSpot虚拟机GC组合方式:

sun jkd

Licensed under CC BY-NC-SA 4.0
Last updated on Mar 23, 2024 06:11 UTC
让过去的过去,给时间点时间
Built with Hugo
Theme Stack designed by Jimmy